An improved procedure for detection and enumeration of walrus signatures in airborne thermal imagery
نویسندگان
چکیده
In recent years, application of remote sensing to marine mammal surveys has been a promising area of investigation for wildlife managers and researchers. In April 2006, the United States and Russia conducted an aerial survey of Pacific walrus (Odobenus rosmarus divergens) using thermal infrared sensors to detect groups of animals resting on pack ice in the Bering Sea. The goal of this survey was to estimate the size of the Pacific walrus population. An initial analysis of the U.S. data using previouslyestablished methods resulted in lower detectability of walrus groups in the imagery and higher variability in calibration models than was expected based on pilot studies. This paper describes an improved procedure for detection and enumeration of walrus groups in airborne thermal imagery. Thermal images were first subdivided into smaller 200 200 pixel ‘‘tiles.’’ We calculated three statistics to represent characteristics of walrus signatures from the temperature histogram for each tile. Tiles that exhibited one or more of these characteristics were examined further to determine if walrus signatures were present.We used cluster analysis on tiles that contained walrus signatures to determine which pixels belonged to each group. We then calculated a thermal index value for each walrus group in the imagery and used generalized linear models to estimate detection functions (the probability of a group having a positive index value) and calibration functions (the size of a group as a function of its index value) based on counts from matched digital aerial photographs. The new method described here improved our ability to detect walrus groups at both 2 m and 4 m spatial resolution. In addition, the resulting calibration models have lower variance than the original method. We anticipate that the use of this new procedure will greatly improve the quality of the population estimate derived from these data. This procedure may also have broader applicability to thermal infrared surveys of other wildlife species. Published by Elsevier B.V. * Corresponding author. E-mail address: [email protected] (D.M. Burn).
منابع مشابه
Automated detection and enumeration of marine wildlife using unmanned aircraft systems (UAS) and thermal imagery
Estimating animal populations is critical for wildlife management. Aerial surveys are used for generating population estimates, but can be hampered by cost, logistical complexity, and human risk. Additionally, human counts of organisms in aerial imagery can be tedious and subjective. Automated approaches show promise, but can be constrained by long setup times and difficulty discriminating anim...
متن کاملAnalysis of Hyperspectral Imagery for Oil Spill Detection Using SAM Unmixing Algorithm Techniques
Oil spill is one of major marine environmental challenges. The main impacts of this phenomenon are preventing light transmission into the deep water and oxygen absorption, which can disturb the photosynthesis process of water plants. In this research, we utilize SpecTIR airborne sensor data to extract and classify oils spill for the Gulf of Mexico Deepwater Horizon (DWH) happened in 2010. For t...
متن کاملتولید خودکار الگوهای نفوذ جدید با استفاده از طبقهبندهای تک کلاسی و روشهای یادگیری استقرایی
In this paper, we propose an approach for automatic generation of novel intrusion signatures. This approach can be used in the signature-based Network Intrusion Detection Systems (NIDSs) and for the automation of the process of intrusion detection in these systems. In the proposed approach, first, by using several one-class classifiers, the profile of the normal network traffic is established. ...
متن کاملSpectral Mixture Analysis for Mapping Abundance of Urban Surface Components from the Terra/aster Data
Using a linear unconstrained least squares (LSS) method and a non-linear artificial neural network (ANN) algorithm, we conducted a spectral mixture analysis to the Advanced Spaceborne Thermal Emission and Reflectance Radiometer (ASTER) image data in Yokohama city, Japan, for mapping the abundance of the urban surface components. ASTER is a newly developed research facility instrument. The spect...
متن کاملForest Fire Advanced System Technology (FFAST): A Conceptual Design for Detection and Mapping
The Forest Fire Advanced System Technology (FFAST) project is developing a data system to provide near-real-time forest fire information to fire management at the fire Incident Command Post (ICP). The completed conceptual design defined an integrated forest fire detection and mapping system that is based upon technology available in the 1990's. System component technologies identified for an en...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Int. J. Applied Earth Observation and Geoinformation
دوره 11 شماره
صفحات -
تاریخ انتشار 2009